Diffusion maps for changing data

نویسندگان

  • Ronald R. Coifman
  • Matthew J. Hirn
چکیده

Graph Laplacians and related nonlinear mappings into low dimensional spaces have been shown to be powerful tools for organizing high dimensional data. Here we consider a data set X in which the graph associated with it changes depending on some set of parameters. We analyze this type of data in terms of the diffusion distance and the corresponding diffusion map. As the data changes over the parameter space, the low dimensional embedding changes as well. We give a way to go between these embeddings, and furthermore, map them all into a common space, allowing one to track the evolution of X in its intrinsic geometry. A global diffusion distance is also defined, which gives a measure of the global behavior of the data over the parameter space. Approximation theorems in terms of randomly sampled data are presented, as are potential applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Chaos-based Image Encryption Scheme Using Multimodal Skew Tent Maps

Chaotic multimodal skew tent maps are constructed to design an efficient chaos-based image encryption scheme with an efficient permutation-diffusion mechanism, in which permuting the positions of image pixels incorporates with changing the grey values of image pixels to confuse the relationship between cipher-image and plain-image. In the permutation process, a multimodal skew tent map is utili...

متن کامل

Diffusion Maps meet Nyström

Diffusion maps are an emerging data-driven technique for non-linear dimensionality reduction, which are especially useful for the analysis of coherent structures and nonlinear embeddings of dynamical systems. However, the computational complexity of the diffusion maps algorithm scales with the number of observations. Thus, long time-series data presents a significant challenge for fast and effi...

متن کامل

Inverse reconstruction method for segmented multishot diffusion-weighted MRI with multiple coils.

Each k-space segment in multishot diffusion-weighted MRI is affected by a different spatially varying phase which is caused by unavoidable motions and amplified by the diffusion-encoding gradients. A proper image reconstruction therefore requires phase maps for each segment. Such maps are commonly derived from two-dimensional navigators at relatively low resolution but do not offer robust solut...

متن کامل

Diffusion tensor magnetic resonance image regularization

As multi-dimensional complex data become more common, new regularization schemes tailored to those data are needed. In this paper we present a scheme for regularising diffusion tensor magnetic resonance (DT-MR) data, and more generally multi-dimensional data defined by a direction map and one or several magnitude maps. The scheme is divided in two steps. First, a variational method is proposed ...

متن کامل

Heterogeneous Datasets Representation and Learning using Diffusion Maps and Laplacian Pyramids

The diffusion maps together with the geometric harmonics provide a method for describing the geometry of high dimensional data and for extending these descriptions to new data points and to functions, which are defined on the data. This method suffers from two limitations. First, even though real-life data is often heterogeneous , the assumption in diffusion maps is that the attributes of the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1209.0245  شماره 

صفحات  -

تاریخ انتشار 2012